A major idea due to Jarrett Walker, adopted with gusto by Vancouver’s Translink, is that transit should be anchored at both ends. That is, transit lines should have busy destinations at both ends, and should strive to reorient development such that the maximum intensity is near the ends. I was skeptical about this from the start, but now that I live in Vancouver and see the practice every time I go to UBC, I realize it’s much worse.
The Translink document justifying the layout has a figure, Figure 10 on PDF-page 15, showing that if development intensity peaks in the middle, then the bus will be overcrowded in the middle and empty at the ends. In contrast, if development intensity peaks at the ends, then the bus will be crowded but not overcrowded the entire way. Or, as Jarrett says, “If a transit line is operating through an area of uniform density, about 50% of its capacity goes to waste.”
Both in theory and in practice, this argument fails to note that a bus with development at the ends will be overcrowded the entire way, because people will travel longer. If UBC were located around Central Broadway instead of at the very west end of the metro area, people would just have shorter travel time; at no point would there be more westbound a.m. crowding because at no point would there be more westbound passengers traveling at the peak. There would be more eastbound a.m. crowding, but that’s not the Broadway buses’ limiting factor. Of the top four routes for passups, which have far more than the fifth route, three are east-west with strong anchors at both end (UBC at the west, the Expo Line at the east) and one, the third worst, is a C-shaped amalgamation of two north-south routes, with peak development downtown, in the middle of the C.
On a theoretical level, development intensity is a result of high land prices justifying high density, and in an urban area high land prices come from proximity to other urban land. In cities without topographic or political constraints on development, the CBD is always near the center of the metro area, and in coastal cities the CBD is usually near the shore but near the center along the axis parallel to the shore. Major secondary nodes usually arise in areas close to many suburbs, often the richer ones, and there’s travel demand to them from all directions: see for examples La Defense near Paris and Shinjuku and the other secondary CBDs in Tokyo. Some of those nodes happen to be near the shore (UBC, Santa Monica and Long Beach, Coney Island) but most aren’t. Any newly-built anchor will sprout further development around it unless there’s very strong local resistance. To connect all those neighborhoods that lie beyond the secondary CBD, unanchored transit lines are then unavoidable.
We’re left then with anchors that are at geographic edges, such as on shores. Those raise travel distances, because people can only live at one direction from them, so for a given residential density they will have to travel longer on average. They look attractive to transit managers because they also make the buses more uniformly full, but they’re worse for passengers who have to travel longer, often standing the entire way because of overcrowding. They’re not even good for transit agency finance, because urban transit invariably has either flat fare (as is the case within Vancouver proper) or fare that depends on distance fairly weakly. Short trips generate as much or almost as much money for the agency while requiring less effort to run because of lower crowding levels. Trips in which most passengers ride end to end are the least efficient, unless they can overcome this with very high crowding levels all day.
Now, what does help finances as well as the passenger experience is bidirectional demand. Anchors are good at that. However, what’s just as useful in cases of asymmetric peak demand is destinations that are short of the most crowded points. For example, in Manhattan the north-south subways fill as they go southward in the a.m. peak. This means that commercial buildings north of Midtown, generating passenger traffic that either is northbound (hence, reverse-peak) or gets off the train before it gets the most crowded within Midtown, add ridership without requiring running more trains. The MTA’s guidelines explicitly call for matching frequency to demand at the most crowded point of each line based on uniform sets of peak and off-peak crowding guidelines. This favors not outlying anchors, but development sprinkled uniformly along transit lines outside the CBD. The same development in the North Bronx would have low transit mode share (UBC has high transit mode share, but it’s at a geographic edge, and on top of that it has a huge body of students), while on the Upper East Side and Upper West Side it would have high transit mode share. The only outer ends where heavy upzoning is appropriate are those that aren’t really ends, such as Flushing and Jamaica, preexisting secondary centers in their own right to which people take the subway from the west and drive from the east.
De facto, Translink makes cost figures available for each bus route, and we can compare costs per boarded passenger on the east-west routes and on the north-south ones. The east-west routes have an initial advantage because they have bidirectional peak demand, whereas the north-south and C-shaped ones do not, and have few destinations short of the CBD, mainly just on Central Broadway or Commercial Drive. Despite this inherent east-west advantage, cost per rider is not lower on the east-west lines. Of the top ten route numbers, there are five balanced east-west routes: 99, 9, 41, 49, 25; and four north-south or C-shaped ones serving downtown: 20, 16, 8, 3. (The 135 is east-west connecting downtown with SFU, and could be included in either category.) Going in the same order as above, the east-west routes cost $0.61, $1.21, $1.10, $1.31, $1.47 per passenger, while the north-south ones cost $1.02, $1.29, $1.09, $1.06. (The 135 costs $1.32.) The three routes that interline to UBC on 4th Avenue – the 4, 84, and 44 – cost $1.62, $1.30, and $0.78 respectively, averaging to $1.30; the 84 is anchored at the Millennium Line, the 44 is anchored downtown, and the 4 is anchored downtown but also continues farther east.
The 99 is much cheaper to run than the other routes despite its high proportion of end-to-end ridership, but it is also critically crowded and benefits from multiple peaks as it serves both a secondary CBD and a university; it is also express, which among the other routes under discussion is only true of the 44, the 84, and the 135. Among the local routes, the north-south routes are actually a bit cheaper to run than the east-west routes even if we exclude the 4 as a not fully anchored exception. The 20, the 8, and the 3 all have their maximum development intensity at the downtown end with some extra development in their inner areas, near SkyTrain and Broadway, and a lot of medium-intensity development at the tail. This provides suitable short-of-CBD destinations adding passengers at low cost.
For one measure of productivity, we can divide the number of boardings per hour by the average load. The result is the reciprocal of the average number of hours spent by each passenger on the bus; a higher number means each passenger spends less time on the bus, indicating higher turnover, or equivalently more revenue relative to crowding. The 99, 9, 41, 49, and 25 have ratios of 2.79, 3.13, 2.65, 1.93, 2.13; the 20, 16, 8, and 3 have ratios of 3.26, 2.73, 3.57, 3.24. The 20, 8, and 3 again look very good here, helping explain their low operating costs and also their low crowding (they rank 12th, 27th, and 20th respectively in passups but 2nd, 6th, and 7th in weekday ridership). The 49 and 25, both highly anchored routes, do not look as good, and indeed have many passups relative to ridership (they rank 1st and 4th in passups but 8th and 10th in weekday ridership); they have the redeeming feature that they protrude slightly into Burnaby, where zonal fares are higher, but judging by a map of the passups, the 25 seems to get a large majority of its ridership strictly within Vancouver, with Nanaimo Station as the eastern anchor rather than Brentwood.
We can extend this analysis further by looking at New York’s bus operating costs. Cap’n Transit laboriously compiled a spreadsheet of operating cost per New York City Transit bus route. Within Manhattan, the pattern is that east-west routes have much lower operating costs per passenger than north-south routes. The M15, the busiest route in Manhattan with ridership comparable to that of the 99 in Vancouver and with the best finances among the north-south routes, almost breaks even on direct operating costs; most of the major east-east routes are outright profitable counting only direct operating costs. The key difference is that the east-west routes are much shorter, so passengers are paying the same amount of money for less distance. In his own analysis, the Cap’n notes that the express bus with the best finances is also one of the shortest, and that in general the profitable-after-direct-operating-costs buses have many transfer points to the subway, which suggests short trips as well.
Having seen more evidence for the theory that good bus finances require short trips rather than endpoint anchors, we can go back to Vancouver and compare more routes. The busiest north-south route not on the above list, the 2/22, works more like the 16 than like the 20, 8, and 3: not only is the 22 C-shaped rather than terminating downtown, but also it serves corridors that are less busy than Commercial and inner Main, reducing the availability of short trips. The shorter 2, overlying the longer 22, has 3.42 boardings per hour per load, but still costs $1.43 per rider; the 22 has only 2.15 boardings per hour per load and costs $1.61 per rider, and also ranks 3rd citywide in passups versus 11th in weekday ridership. On both the 16 and the 22, the north-south legs (Arbutus and Renfrew for the 16, Macdonald and Clark/Knight for the 22) are streets that aren’t very busy by themselves, but instead act as important cross-streets for Broadway and other east-west streets. Here are Knight, Renfrew, Arbutus, and Macdonald, and here are, by contrast, Commercial, Fraser, and Main, all around the same cross avenue (near but not at 16th).
The same is true of the east-west buses. The 99, 9, and 41 have better finances than the 49 and the 25. They also do better on passups, ranking 2nd, 11th, and 10th versus 1st, 3rd, and 4th in ridership. The 99 has much better finances than all other buses, which can be chalked to its overcrowding, but ultimately comes from continuous intense development all over Broadway making it a prime corridor. 41st has some of this development as well: here is how a strip of it looks close to the cross street I live on. Compare this with 49th and King Edward around the same cross street. This is not cherry-picked: 49th and King Edward just aren’t commercial streets, and even where they act as important cross streets such as at Cambie there’s not much development there. Of course 4th does have this commercial development and is almost as expensive as 49th and King Edward, but its commercial development is discontinuous, and the relatively intense section between Granville and Balsam is short enough that people can walk it.
So what this means for transit-friendly development is that it should not worry about anchoring, but instead try to encourage short trips on local transit. In his original post about Vancouver’s anchoring, Jarrett says of Marine Drive, at the southern edge of Vancouver proper, “From a transit efficiency standpoint, it would be a good place for some towers.” This is not good transit: from the perspective of both costs and ridership any residential development south of Broadway in which people take the bus downtown is equivalent, so might as well put it immediately south of Broadway or at King Edward, 41st, or 49th to connect with the east-west bus routes and let people live closer to work. Commercial development, too, is best placed short of downtown, because if it’s on Marine Drive people will drive to it whereas if it’s along the blocks immediately south of Broadway many won’t.
Better would be to do what Vancouver hasn’t done, and encourage medium-intensity development all over the major corridors, of the kind that exists on Commercial, Fraser, Main, and 41st and allows their respective bus routes to serve productive short trips, generating low costs without excessive crowding. Towers on Marine Drive, to the extent that their inhabitants would even use transit instead of driving, would clog all the north-south buses. Mixed-use medium-rise development running continuously along Arbutus (which already has an abandoned rail corridor that could make a relief light rail line if the Canada Line gets too crowded) and the major east-west corridors would have the opposite effect, encouraging local trips that wouldn’t even show up at the most crowded point of the line. I’ve argued before that this urban layout is good for walkability, but it appears to also be good for surface transit productivity.
This is also relevant to upzoning around SkyTrain stations. There has not been so far any upzoning around Cambie, even though the Canada Line has been in operation for 3.5 years and was approved for construction over 8 years ago, but there will be some very soon. Vancouver’s draft plan, as shown on PDF-pages 26-27, permits 4 floors of residential development on the cross streets with the stations, 6 on Cambie itself, and between 6 and 12 with mixed use near the stations themselves. Continuous commercial development will be permitted only on Cambie between 41st and 49th. This will be of some use to the east-west buses because there will be more destinations at Cambie, but it will not create the same variety of small destinations available on Main, Fraser, 41st, Commercial, and Broadway, not without further upzoning near intersections that are nowhere near SkyTrain. It’s better than the towers of the Burnaby stations, but it’s still not very good. There is commercial upzoning near Marine Drive, but that can’t be very transit-oriented given the location, and it can’t do much for north-south bus productivity since in the nearby neighborhoods car ownership is high.
It’s too late to change the rezoning plan to permit more linear commercial development on the cross streets, but it’s possible to do better when Vancouver gets around to building Broadway SkyTrain. On Broadway itself, general intensification, allowing more residential density and replacing residential-only zoning with mixed-use zoning, should suffice. There is continuous commercial development from east of Cambie to west of Arbutus, with a two-block gap to Macdonald, and a one-block gap between Macdonald and Alma; both gaps are within a few hundred meters of the cross streets and can be closed easily. The Alma-Sasamat gap on 10th is probably too hard, though. The Arbutus-Macdonald gap on 4th can also be closed, though those blocks are nearly a kilometer from where the stations would be. But it’s as important to allow commercial zoning extending as far south as possible on the major north-south streets, especially Arbutus. Continuous mixed-use zoning should extend at least as far as 16th, and maximum residential density should be at a minimum 4 floors and ideally 6, as Arbutus, Macdonald, and 16th are very wide and the intersections feel out of scale to the current 1-story development.
Of course, this principle of design is true only of urban transit, both surface and rapid. Once the stop spacing increases to regional rail levels, it is no longer feasible to have continuous commercial development, and usually the street networks of the different suburbs are separate anyway without continuous arterials. In all cases it’s important to allow commercial zoning around stations, but the spiky development characteristic of the Expo and Millennium Lines becomes a better idea the longer the stop spacing is. Endpoint anchoring also becomes more justifiable at near-intercity scales, such as New York-New Haven or Boston-Providence: the fares are closer to proportional to distance, and also neither New Haven nor Providence is sprouting suburbs at such scale and distance that it’s justifiable to extend Metro-North or the MBTA with their usual stop spacing past those cities. But at the scale of urban transit, or even inner regional rail, the natural endpoint of a line is not a secondary anchor, and transit agencies should control peak-to-base ratios by commercial upzoning along corridors and near many stations outside the CBD rather than by making people ride transit kilometers longer than would be necessary if the zoning were different.
